
2022 IEEE Real-Time Systems Symposium (RTSS)

Edited by Benny Akesson

2

Organization

RTSS@Work chair

• Benny Akesson, ESI (TNO) and University of Amsterdam

Program Committee

• Matthias Becker, KTH Royal Institute of Technology, Sweden

• Federico Terraneo, Politecnico di Milano, Italy

• Zheng Dong, Wayne State University, USA

• Kilho Lee, Soongsil University, South Korea

• Behnaz Pourmohseni, Bosch, Germany

• Patricia Derler, Palo Alto Research Center (PARC), USA

• Anaïs Finzi, TTTech Computertechnik, Austria

3

4

Message from the RTSS@Work Chair

Welcome to RTSS@Work 2022, the open demo session organized as a part of the 43rd IEEE Real-Time

Systems Symposium, held in Houston, Texas on December 6, 2022.

The goal of RTSS@Work is to provide a platform for researchers to present prototypes, tools, simulators,

and systems, which extend the state-of-the-art in Real-Time Technologies and Techniques. It augments the

traditional forum by enabling presenters to demonstrate working systems, thereby allowing them to directly

engage with the audience, generate interest in new research topics, and encourage wider adoption of

common frameworks.

This year’s RTSS@Work is very special, as it is the first physical instance after years of virtual events due

to the COVID pandemic. It is nice to meet each other again and to physically demonstrate and discuss the

work we have done. While the COVID pandemic reduced the number of submissions in previous years, I

am happy to announce that we had nine demo submissions this year, on par with the pre-pandemic era. The

program committee, comprising seven researchers, selected eight demos to appear in the session.

I would like to conclude by thanking the program committee for accepting my invitation and for spending

their time reviewing and selecting the demo abstracts. I would also like to thank the authors for submitting

to RTSS@Work, for delivering the camera-ready abstracts on time, and for demonstrating their work at the

conference.

Benny Akesson, ESI (TNO) and University of Amsterdam, the Netherlands

RTSS@Work 2022 Chair

5

6

Contents

Demonstrating The MAAT Tool: Using Algebraic Process Models To Support Time-

Sensitive Requirements Design

Boutheina Bannour, Arnault Lapitre, Patrick Tessier, and Guillaume Giraud

8

An Open-Source Power Monitoring Framework for Real-Time Energy-Aware GPU

Scheduling Research

Mohsen Karimi, Yidi Wang, and Hyoseung Kim

11

A Scheduling and Analysis Tool for Parallel Real-Time Applications on Multicore Platforms

Morteza Mohaqeqi, Gaoyang Dai, Behnam Khodabandeloo, Petros Voudouris, and Wang Yi

13

Know your Enemy: Benchmarking and Experimenting with Insight as a Goal

Mattia Nicolella, Denis Hoornaert, Shahin Roozkhosh, Andrea Bastoni, and Renato Mancuso

16

Hardware Data Re-organization Engine for Real-Time Systems

Shahin Roozkhosh, Denis Hoornaert, and Renato Mancuso

19

Demonstrating R-TOD: Real-Time Object Detector with Minimized End-to-End Delay

Seungha Kim, Ho Kang, Sol Ahn, Kyungtae Kang, Nikil Dutt, and Jong-Chan Kim

22

Real-Time Monitoring of Heart Rate Variability with PPG

Jingye Xu, Yuntong Zhang, Mimi Xie, Wei Wang, and Dakai Zhu

24

Real-Time Out-of-Distribution Detection on a Mobile Robot

Michael Yuhas, and Arvind Easwaran

26

.

7

Demonstrating The MAAT REQ Tool: Using Algebraic Process Models To
Support Time-Sensitive Requirements Design

Boutheina Bannour∗, Arnault Lapitre∗, Patrick Tessier∗, Guillaume Giraud†
∗ Université Paris-Saclay, CEA, List, Palaiseau, France

† PES R&D Department, RTE

Abstract— In this work, we implement a process algebra-
based framework for real-time requirements analysis into
the MAAT REQ tool. MAAT REQ provides an automatic
transformation of structured textual requirements into process
algebra and exploits it in the exploration of their intended
real-time behaviors and concurrency. The tool’s capabilities
of requirement assessment are demonstrated on a practical
example of an alarm system.

I. MOTIVATION AND CONTRIBUTION

Formulating requirements that accurately describe real-
time behaviors, and eliminating misunderstandings, is a
crucial but difficult task for designers. The complexity of
real-time requirements has made the use of formal methods
widespread to check their desired properties and clarify
their formulation. In a previous work [1], we proposed
a framework based on requirements structured following
EARS [6] templates, following recommendations from the
International Council on Systems Engineering (INCOSE).
Real-time details are introduced to refine event-driven, state-
driven system behaviors. We utilize such information to
aggregate (functional) requirements’ behaviors into Process
Algebra (PA) models and thus analyze them by simulation
or formal validation. Compared to related works on formal-
izing requirements using PA [1], we go a step further by
considering real-time aspects. The central component of [1]
is an implementation of a PA using SAT solving based on our
know-how of the symbolic execution tool DIVERSITY [5],
relevant in the presence of constraints mixing time and
data. We have not investigated zone-based techniques usually
undertaken with Timed Automata (TA) for their run-time
efficiency, which motivates the following contributions.

• Implementation a Clocked PA based on work [2] which
states links with TA and zone-based handling of time
and clocks,

• Enhanced EARS syntax with time details that directly
map onto the Clocked PA,

• Redesign of the prototype of [1] into the MAAT REQ
tool, which provides UML modeling of requirements,
PA, and connections to SAT solving together with zone-
based techniques.

We give in next section some technical insights on our
contributions, yet many details are left to the demonstration.
The overall architecture of the tool MAAT REQ is shown
in Fig.1. The tool provides an advanced textual editing
for structured requirements based on LSP [7]. We have
created a requirement UML metamodel and a process UML

metamodel with modeler Papyrus [3]. First, we parse the
textual requirements to obtain the requirements model. Then,
we perform a model-to-model transformation to get the
process model. After that, analyzes are performed on this
process model. A feedback is produced on the consistency
of the entry requirements. Thus, the user can revise them
and repeat the analyzes. The tool developments are service-
oriented, and we use OSGi [4] to orchestrate the services.

II. TECHNICAL INSIGHTS

Clocked Processes [2] are defined by the following syntax:

P ::=
{
x := 0

}
x∈R ψ ▷+i∈I(ϕi, ai).Pi | P1 |[A]| P2 | K

The prefix process (ϕi, ai).Pi performs action ai guarded
by clock constraint ϕi and then behaves like process Pi.
The operator +i∈I_ denotes a choice among processes. The
operator _|[A]|_ denotes the parallel composition of processes
that synchronize on actions from A. The construct

{
x :=

0
}
x∈R ψ ▷ +i∈I(ϕi, ai).Pi defines: a set of clocks from R

to be reset, and a clock invariant ψ that has to be satisfied on
time passing for the execution of every action ai in the sum.
This notion comes from TA and requires static handling to
evaluate the process. K permits to call a process definition
of the form K = P , where K is a unique process identifier.
A specification consists of a main process and a collection
of process definitions.

Listing 1: Processes of the Alarm System
1 AlarmSystem = //timed with clock x
2

{}
⊤ ▷ (⊤, set_button_is_pressed).

3
{
x := 0

}
x ≤ 60 ▷ (x = 60, activate_alarm).

4
{}

⊤ ▷ (⊤,motion_detected).
5

{
x := 0

}
x ≤ 0 ▷ (⊤, emit_tone).

(
6

{
x := 0

}
x ≤ 300 ▷

(
7 (⊤, alarm_is_disarmed).
8

{
x := 0

}
x ≤ 0 ▷ (⊤, tone_off).AlarmSystem

9 + //choice op.
10 (x = 300, tone_off).
11

{}
⊤ ▷ (⊤, alarm_is_disarmed).AlarmSystem

)
12 |[{alarm_is_desarmed}]| //parallel op.
13 HandleSecurity

)
14
15 HandleSecurity = //timed with clock y
16

{
y := 0

}
y ≤ 60 ▷

(
17 (⊤, alarm_is_disarmed).0 // 0 as inactive proc.
18 + //choice op.
19 (y = 60, alert_emergency_center).HandleSecurity

)
List.1 shows the demonstration example of the Alarm
System (AS). AS is started by pressing the set button (line
2). The alarm is activated after 60s to allow for some time
to leave the area (line 3). When motion is detected (line 4),
the alarm sounds (line 5) until AS is disarmed or reaches the
end of the alarm duration of 300s (lines 6-11). In addition,

8

Time-Sensitive Requirement Analysis Services

LSP-Edition
Service

Clocked Process
Algebra Evaluation

Requirement
Model

Process Algebra
Model

SAT Solver
Zone DBM

OSGi

Process Algebra Analysis Services

Coverage of
Req, Action, . . .

Reachability of
Behavior, Sequence, . . .

Consistency (Deadlock, Timelock, . . .)Transformation
Service

Analysis feedback

Fig. 1: MAAT REQ

if AS is not disarmed, then the emergency center is alerted
every 60s until AS is disarmed (sub-process, lines 15-19).
Process evaluation. Clocked Processes have been given
operational semantics using theoretical regions automata [2],
which can be implemented efficiently using zones. Zones are
sets of clock constraints and thus represent symbolically all
valuations that satisfy these constraints without enumeration.
We integrate the implementation of zones by the DBM
(Difference Bound Matrix) data structure provided by the
TA model-checker UPPAAL [8].

Our implementation generates an execution tree depicted
in Fig.3. The tree construction starts with an initial node EC0

(EC<id:0,h:0,step:1>, EC for Execution Context), which
contains the main process to execute and an initial zone Z0.
Next, Z0 is substituted by reset(Z0, R). Roughly speaking,
clocks from R to reset are computed by static analysis
s.t. all parallel processes synchronize on clock resets: e.g.,
R = {x, y} when execution reaches the parallel composition
(line 12) s.t. left (resp. right) process resets clock x (resp.
y). Then, up(Z) represents all states reachable from a zone
Z by time elapsing that is compatible with process invariant
set INV , up(Z)∧ψ∈INV ψ (time elapsing cannot invalidate
either invariant of parallel processes). For previous case,
INV = {x ≤ 300, y ≤ 60} is issued from left (resp.
right) process invariant x ≤ 300 (resp. y ≤ 60). This
step is associated an EC in the tree: EC2 obtained from
context EC0, EC15 obtained from context EC13, etc. Next,
an EC is computed for each follow-up discrete action a under
satisfiable guard ϕ, i.e., Z∧ϕ is a zone with a non-empty set
of valuations. The previous procedure is repeated on every
EC of the tree. As executions can be infinite (due to process
calls), stopping criteria on tree size can be set. Redundant
behavior can be detected as well. Deciding whether or not
an execution is redundant is done by testing zone inclusion
and simplifying inactive processes.
Structured requirement. Requirement statements are pro-
vided by a grammar based on EARS [6]. Fig.2 shows the
structured requirements of the Alarm System.

R1 : when set button is pressed, the system shall activate
the alarm immediately after 60s

R2 : after the alarm activation, when motion is detected,
the system shall emit a tone immediately

R3 : after tone emission, inside time period 300s, when
the alarm is disarmed, the system shall turn off the
tone immediately [goto] (R1)

R4 : at end time period 300s [scope] (R3), the system
shall turn off the tone immediately

R5 : after tone off [ref] (R4), the system shall wait for
the alarm to disarm [goto] (R1)

R6 : after tone emission, inside time period 60s, the
system shall wait for the alarm to disarm

R7 : at end time period 60s [scope] (R6), the system shall
alert the emergency center [goto] (R6)

Fig. 2: Structured requirements

A user-defined glossary, tailored to the needs of the re-
quirement engineer, defines systems, triggers, and also equiv-
alence for ease of use (e.g., "emit a tone"/"tone emission").
Each requirement statement is expressed by a -possibly
complex- precondition, followed by a realization, specifying
the system’s action. Requirement behaviors are initiated
when a triggering event occurs, signified with keyword
when⟨ trigger ⟩ (e.g., R1, R2). State-driven requirements are
active while the system is in a defined state. As the concern
is timing, they are built with the keyword inside time period
⟨ period ⟩ (e.g., R3). We introduce details to enhance the se-
quencing of system behaviors: they can be triggered periodi-
cally through pattern every ⟨ period ⟩, subsequently to other
behaviors through after ⟨ system response ⟩ / at end time
period ⟨ period ⟩, or within some time slot (e.g., within⟨
time interval ⟩). R3 and R4 show that requirements can be
complex and use several of these constructs at the same time,

9

and possibly with cross-requirement references. In [1], we
outline the main transformation patterns into process algebra
by taking advantage of the requirement structure. System
responses sharing the same trigger are composed in parallel,
and triggers can be non-determistically produced upon a
system response such that each (sub-)system is assumed to
have an implicit initialization upon which its behavior occurs.
State-driven requirements and systems responses with time
details are transformed by various patterns involving clock
reset, invariant, or guard constructs of the process algebra.

III. CONCLUSION

The objective of the demo is to present the capabilities
of the MAAT REQ tool: requirement design, transformation
into Process Algebra (PA) and analysis, applied on the Alarm
System. We can test whether certain requirements can be
covered at some point in the PA execution with traceability
feedback. Moreover, we can detect various requirement in-
consistencies that the tool can highlight as synchronization
lacks, deadlocks, or timelocks in the PA execution. Finally so
as to consider more requirements and vary their structure, we
will consider other illustrative examples1. We are making our
demo materials available online for the conference audience.

REFERENCES

[1] M. Arnaud, B. Bannour, G. Giraud, and A. Lapitre.
“Investigating Process Algebra Models to Represent
Structured Requirements for Time-sensitive CPS”. In:
33nd Int. Conf. on Software Engineering and Knowl-
edge Engineering, SEKE. KSI Research Inc., 2021.

[2] S. Cattani and M. Kwiatkowska. “A Refinement-based
Process Algebra for Timed Automata”. In: Formal
Aspects Comput., 2005.

[3] Eclipse. Papyrus Modeling Tool. Accessed October 13,
2022. URL: https : / / www . eclipse . org /
papyrus/.

[4] OSGi Working Group. Open Services Gateway initia-
tive (OSGi). Accessed October 13, 2022. URL: https:
//www.osgi.org/.

[5] CEA List Institute. The DIVERSITY Tool. Accessed
October 13, 2022. URL: https : / / projects .
eclipse.org/proposals/eclipse-formal-
modeling-project/.

[6] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak.
“Easy Approach to Requirements Syntax (EARS)”. In:
17th Int. Requirements Engineering Conf. RE. IEEE,
2009.

[7] Microsoft. Language Server Protocol (LSP). Accessed
October 13, 2022. URL: https://microsoft.
github.io/language-server-protocol/.

1A part of this work was supported by the PRISSMA project, co-financed
by the French Grand Defi on Trustworthy AI for Industry. A part of this
work was supported by European commission through CPS4EU project
that has received funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 826276. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and France,
Spain, Hungary, Italy, Germany.

[8] Uppsala University and Aalborg University. The UP-
PAAL Tool. Accessed October 13, 2022. URL: https:
//uppaal.org/.

EC<id : 0 , h : 0 , step : 1 >

line:1, zone: x=y,

EC<id : 2 , h : 1>

line:2, zone: x=y,

EC<id : 3 , h : 2 , step : 2 >

line:3, zone: x=y,

EC<id : 5 , h : 3>

line:3, zone: x⩽60, x-y⩽0,
line: 3-5

EC<id : 12 , h : 8 , step : 5 >

line:6||13, zone: x⩽0, y⩾60, x-y⩽-60,

EC<id : 13 , h : 9>

line:6||15, zone: x⩽0, y⩾60, x-y⩽-60,

EC<id : 15 , h : 10>

line:7+10||17+19 , zone: x⩽60, y⩽60, x=y

EC<id : 16 , h : 11 , step : 6 >

line:8|| .0 , zone: x⩽60, y⩽60, x=y

EC<id : 20 , h : 12>

line:8|| .0 , zone: x⩽0, y⩽60, x-y⩽0, y-x⩽60

EC<id : 21 , h : 13 , step : 8 >

line:8|| .0 , zone: x⩽0, y⩽60, x-y⩽0, y-x⩽60

EC<id : 28 , h : 14>

line:2|| .0 , zone: x⩽0, y⩽60, x-y⩽0, y-x⩽60

EC<id : 30 , h : 15>

line:2|| .0 , zone: x-y⩽0, y-x⩽60

EC<id : 31 , h : 16 , step : 11 >

line:3|| .0 , zone: x-y⩽0, y-x⩽60

EC<id : 42 , h : 17>

line:3|| .0 , zone: x⩽60, x-y⩽0

EC<id : 5 , h : 3>

REDUNDANCE

EC<id : 17 , h : 11 , step : 7 >

line:7+10||19 , zone: x=60, y=60, x=y

EC<id : 22 , h : 12>

line:7+10||19 , zone: x=60, y=60, x=y

EC<id : 24 , h : 13>

line:7+10||17+19 , zone: 60⩽x⩽120, y⩽60, x-y⩽60, y-x⩽-60

...

line: 11||17+19

inv [] =>[true]
TIME_ELAPSE

inv [] =>[true]
act [true] /set_button_is_pressed

inv [x] =>[x⩽60]
TIME_ELAPSE

inv [x] =>[x⩽0]
act [true] / emit_tone

UNFOLD line:13
K = HandleSecurity

inv [x, y] =>[x⩽300, y⩽60]
TIME_ELAPSE

|sync| inv [x, y] =>[x⩽300, y⩽60]
act [true, true] /
TAU(alarm_is_disarmed)

inv [x] =>[x⩽0, true]
TIME_ELAPSE

inv [x] =>[x⩽0, true]
act [true] /tone_off

UNFOLD line: 8
K = AlarmSystem

inv [] =>[true, true]
TIME_ELAPSE

inv [] =>[true, true]
act [true] /set_button_is_pressed

inv [x] =>[x⩽60, true]
TIME_ELAPSE

inv [x, y] =>[x⩽300, y⩽60]
act [y=60] /
alert_emergency_center

UNFOLD line:19
K = HandleSecurity

inv [y] =>[x⩽300, y⩽60]
TIME_ELAPSE

|sync| inv [y] =>[x⩽300, y⩽60]
act [x=300] /tone_off

R1

R2

R6

R7

R3

R4

R1

Fig. 3: Process evaluation for requirement coverage

10

An Open-Source Power Monitoring Framework for
Real-Time Energy-Aware GPU Scheduling Research

Mohsen Karimi, Yidi Wang, and Hyoseung Kim
University of California, Riverside

mkari007@ucr.edu, ywang665@ucr.edu, hyoseung@ucr.edu

Abstract—General-purpose graphics processing units (GPUs)
have received substantial interest from the real-time systems
community as they can be much more powerful than CPUs
on massively-parallelizable, data-intensive workloads. However,
GPUs operations are usually power-intensive, and when used in
systems with stringent power constraints such as automobiles and
battery-powered devices, the use of GPUs makes power analysis
difficult and can lead to power/energy budget violations. Although
many of today’s GPUs have onboard sensors to report their
power consumption, they are usually slow and imprecise to be
used for real-time GPU research, especially when observing the
power consumption behavior of GPUs and developing scheduling
techniques in dynamic workload scenarios. In this work, we
present an open-source GPU power monitoring framework that
measures the actual power consumption of GPUs at runtime
with fast and precise responses. The framework can measure the
voltage and current of multiple GPUs using an array of INA260
sensors and detect current and voltage changes as little as 1.5 mA
and 1.5 mV, respectively, with sampling rates of up to 5 KHz per
GPU. We believe this framework will help researchers no longer
rely on inaccurate readings from onboard sensors to conduct
real-time energy-aware GPU scheduling research.

I. INTRODUCTION

GPUs, known for their parallel processing capabilities,
are widely used in many applications ranging from image
processing and machine learning tasks to complex simulations
in computational physics. The high performance of GPUs
introduces several additional considerations in system design,
one of which is their high power consumption. However, it is
challenging to analyze the exact power consumption of GPU-
using tasks since the detailed architecture of commercial off-
the-shelf (COTS) GPUs is not publicly open. While some man-
ufacturers provide tools for power monitoring, such as onboard
sensors and APIs for NVIDIA GPUs, they are not suitable for
use under real-time scheduling scenarios with multiple GPU-
using tasks, due to their low sampling rate and poor accuracy
In this work, we design and implement an open-source GPU
monitoring framework that is capable of measuring the precise
power consumption of COTS GPUs. Our framework is non-
intrusive and transparent to GPU workloads as it does not
affect the performance of GPU tasks during power monitoring
and does not require any modification to the application code.

II. DEMO DESCRIPTION

High-end GPUs usually receive power from PCI Express
(PCI-E) as well as directly from the power supply unit
(PSU). To measure the entire power consumption of each
GPU, both of these powers should be measured when the

Figure 1: The connections of the sensors

GPU is operating. To measure the current consumption from
each power line, a sensor should be installed in series with
the power line, which makes the implementation somewhat
complicated. Specifically, for PCI-E power, we use a PCI-E
extension cable [2] to access the power lines, and then cut the
12V line from the PCI-E extension cable and installed a sensor
in series with the line. We chose INA260 [3] as our sensor to
measure voltage and current as it provides a sufficient level
of sampling rate and accuracy. A similar approach is used for
the separate power coming from the PSU. Consequently, we
can measure the current and voltage of each GPU using two
sensors, the one for energy provided by PCI-E and the other
for energy provided by the PSU. Raspberry Pi 3 (RPI3) is
used to collect all the data from sensors via I2C and store
them in the memory SD card as csv files. The data is then
transferred to the PC for further processing. The connections
for the sensors are shown in Fig. 1.

We provide an open-source software library that is publicly
available at [1]. We also provide an experimental setup to test
the monitoring framework, which is also used in [4] to measure
the power consumption of two heterogeneous GPUs, NVIDIA
RTX 3070 and T400, under various real-time task execution
scenarios. The setup for the experiment is shown if Fig. 2.
In this setup, we are able to monitor the power consumption
of the two GPUs at the same time by using four INA260
sensors. The RPI3 and PC are connected over WiFi and the
Network Time Protocol (NTP) is used to synchronize time
between RPI3 and PC. The data is stored in RPI3 as csv files
containing the voltage and current of the sensors as well as the

11

Figure 2: The hardware setup for experiment

timestamp of each sample in microseconds. The program is
written in C language and tested on the Linux Kernel 5.15.56-
v7+ running on RPI3. Each of the INA260 sensors is capable
of sampling current and voltage at the maximum speed of
140 µs per sample. However, the bandwidth limitation of
the I2C bus would make it challenging to receive data from
multiple sensors at that speed. The operating system scheduler
can also cause delays due to other tasks running on the system.
Therefore, we set the priority of the task to real-time in Linux
operating system and disabled unnecessary services such as
GUI to reduce the delay caused by other tasks. We could
achieve a sampling rate of more than 5K samples/s when
recording voltage and current of two GPUs simultaneously,
which corresponds to one sample every 200 µs. The block
diagram of the connections for the setup with two GPUs is
shown in Fig. 3.

Figure 3: Block diagram of the connections for two GPU setup

To test the performance of the system, we sampled 1 million
current and voltage samples and recorded the measurement
time for each of the samples. Fig. 4 shows the histogram of
measurement times for one million samples. The minimum,
maximum, average, and 99th percentile of the measurement

times are recorded as 168 µs, 224 µs, 177 µs, and 181 µs,
respectively.

170 180 210 220190 200
Measurement time (s)

0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r

of
 s

am
pl

es

10 5

Figure 4: Histogram of measurement times

Although the current setup uses 4 sensors, our framework
itself can be extended to up to 16 sensors (8 GPUs) for a
single i2c bus; this limitation is imposed by the fact that the
INA260 sensor can be configured to have up to 16 different
I2C addresses by modifying the A0 and A1 connections of the
sensor [3]. However, this limitation can be easily overcome by
using multiple I2C buses and we expect our framework can
be used for monitoring eight or more GPUs.

REFERENCES

[1] GPU Power Monitoring System. https://github.com/rtenlab/gpu
power monitoring.

[2] Corsair. Pcie 3.0 x16 extension cable. https://www.corsair.com/
us/en/Products/p/CC-8900419.

[3] Texas Instrument. Ina260 36v, 16-bit, precision i2c output cur-
rent/voltage/power monitor. https://www.ti.com/product/INA260.

[4] Y. Wang, M. Karimi, and H. Kim. Towards energy-efficient real-
time scheduling of heterogeneous multi-gpu systems. In 2022
IEEE Real-Time Systems Symposium (RTSS), 2022.

2
12

https://github.com/rtenlab/gpu_power_monitoring
https://github.com/rtenlab/gpu_power_monitoring
https://www.corsair.com/us/en/Products/p/CC-8900419
https://www.corsair.com/us/en/Products/p/CC-8900419
https://www.ti.com/product/INA260

A Scheduling and Analysis Tool for Parallel
Real-Time Applications on Multicore Platforms

Morteza Mohaqeqi, Gaoyang Dai, Behnam Khodabandeloo, Petros Voudouris and Wang Yi
Uppsala University, Sweden

{morteza.mohaqeqi, gaoyang.dai, behnam.khodabandeloo, petros.voudouris, yi}@it.uu.se

Abstract—This paper presents a tool for the design and analysis
of real-time systems specified as a set of reoccurring DAG tasks
deployed on a heterogeneous multiprocessor platform. First, it
allows designers to evaluate – by simulation and analytical meth-
ods – different scheduling policies using user-specified system
configuration parameters such as the number of processor cores,
memory access latency, and task parameters etc., and randomly
generated task sets. Second for a system design consisting of a
fixed hardware configuration, a task set and a scheduling policy,
the tool will generate a run-time schedule providing performance
real-time guarantees.

Index Terms—timing analysis, scheduling simulator, parallel
real-time tasks

I. INTRODUCTION

Today, parallel architectures such as multi- and many-core
processors have become ubiquitous in computing. In embed-
ded domains, there is an increasing trend towards the usage
of heterogeneous and parallel architectures for performance-
demanding and real-time applications. Paradoxically, the in-
troduction of performance enhancing architectural solutions,
such as heterogeneous processor cores and multi-threading
introduces a large degree of complexity and makes tradi-
tional single-core timing analysis approaches unsuitable for
new architectures. This brought a significant challenge (and
also a great opportunity) for embedded systems designers
to explore the hardware parallelism. Our approach to facing
this challenge is to provide a tool to implement and evalu-
ate customized schedulers, and faithfully realize analytically-
approved high-level task models.

Applications Areas. This tool is designed (and under
development) for intended applications in safety-critical do-
mains where high-performance and real-time requirements
must be ensured. Typical application areas include automotive
systems involving self-driving and 5G/6G networks, that are
computationally demanding real-time systems deployed on
heterogeneous multi-core and many-core platforms.

Main Features. The tool offers two features. First, it allows
the designers to analyse the timing behavior and performance
of a system (using either simulation and/or analytic methods)
with (a large number of randomly generated) possible configu-
rations of hardware and software components, and scheduling
policies. The goal is to select and validate the potentially best

This work is supported in part by the European Research Council (ERC)
and Knut and Alice Wallenberg Foundation (KAW) through projects ERC
CUSTOMER (Grant 834166) and KAW UPDATE (Grant 20190134). We
thank Duc Anh Nguyen for his efforts in the implementation.

system configuration and run-time scheduling policy. Second,
for a given system configuration (a design), it shall provide a
run-time schedule, with real-time and performance guarantees
such as worst-case response times (WCRTs) and throughput.

The tool uses directed acyclic graphs (DAGs) to describe
software components. A DAG [15] is a directed graph where
nodes represent the sequentially executed sub-components of
a software and edges represent precedence constraints and
(or) input-and-output data relations between the nodes. In
summary, the tool provides the following basic utilities for
timing analysis of DAG tasks running on multicore systems.

• Simulating the execution of a set of periodic real-time
DAGs on a specified hardware platform; based on that,
timing and performance measures may be computed, and

• Analytical computation of a safe upper-bound on the
WCRT of each task.

A user can specify the target hardware platforms with
configuration parameters such as number and type of processor
cores, as well as memory overheads. In addition, the mapping
between software components onto hardware resources as well
as the intended run-time scheduling policy among a set of pre-
specified policies can be specified.

II. AN OVERVIEW OF THE TOOL

Figure 1 shows the main window of the tool, which contains

Fig. 1. The main window of the tool; comparing different schedulers.

two parts: configuration (the left-hand side), and results (the
right-hand side). In the configuration part, the user can specify
software and hardware configuration for which the timing

13

analysis (simulation or analytical) is to be done. More details
of this part is presented in subsequent sections. The result of
the analysis is obtained in terms of performance and time-
related measures (e.g., acceptance ratio) that are provided to
the user through a number of charts. In the case of simulation-
based analysis, if a system is determined unschedulable, the
tool will output a deadline miss scenario.

The tool is implemented in Java and can be smoothly run
in different environments.

III. APPLICATION MODELLING

To model parallel real-time applications, the tool adopts the
reoccurring task model where each task is represented by a
period and a DAG of nodes and directed edges. The shared
resource access of the tasks is modeled by a semaphore-
like mechanism, where a job is supposed to be suspended
once the required resource is not available. A simple priority-
based protocol is considered, for which both simulation and
analytical computation of WCRT have been developed.

To assess a timing/schedulability analysis approach, a set
of (DAG) task sets are randomly generated according to the
following graph generation and period assignment methods.

Random Graph Generation: Graph generation methods
specify a method to create graph structures. In our tool, we
have included three methods: the layer-by-layer approach [4],
series-parallel graphs [13], and the STR2RTS benchmark [14].

Period Assignment: Period values can be generated using
the UUnifast algorithm [1]. In addition, they can be chosen
from a pre-defined set of values based on to two appli-
cation areas: 5G networks [11], which contains the values
of {0.125, 0.25, 0.5, 1} ms, and automotive systems designed
according to the AUTOSAR reference model [9]. An extended
set of the automotive periods, specified in [12], is also added.

In addition to randomly generated task sets, the tool can
analyze user-specified task sets. In this case, the structure
and timing parameters of the DAGs, including periods and
WCETs, are determined by the user.

IV. SUPPORTED SCHEDULING ALGORITHMS

A set of well-known schedulers have been considered,
including RM, EDF, and Federated [10], as well as Dynamic
Federated [5] and Virtually-Federated [8], scheduling. For
some scheduling policies, both analytical method and sim-
ulation can be done, while for others only one approach is
available.

The scheduler can be chosen to be fully preemptive, pre-
emptive at certain points (ticks), or non-preemptive. Further,
it can be global or partitioned. Also, a partially partitioned
scheduling is added, where a subset of the jobs are statically
assigned to the cores, and the others are globally scheduled.

Figure 2 shows a sample schedule generated by the tool.
The left-side panel shows the tasks and the obtained WCRTs.

V. PLATFORM DESCRIPTION

Currently a platform description consists of mainly the
number of processor cores and the memory access time, which

Fig. 2. The schedule obtained from simulation.

is specified in terms of three user-specified parameters: (1) the
time for loading initial data from memory, (2) context-switch
overhead incurred by any preemption, and (3) communication
overhead, incurred by data transfer between any two consec-
utive nodes of a DAG locating on different cores. In addition,
there may be a set of other resources shared by the tasks.

VI. RELATED WORK

An open-source implementation of a number of DAG tim-
ing analysis methods has been provided in [16]1. This is
a relatively general framework, which considers a common
implementation of DAG. This basic implementation is then
used for implementing the corresponding schedulability tests.
The tool comes with no graphical interface.

YARTISS [2] and SimSo [3] are two timing evaluation tools
for multicore real-time systems. The focus of both is on timing
analysis based on a simulation-based approach.

A modeling and development tool for multicore embed-
ded systems has been proposed by the Eclipse APP4MC
project [6]. Specifically, a simulation environment for analysis
of such models has been developed [7]. While the project
targets a general way for detailed description of multi-/many-
core embedded systems, our tool gives a more focused and
specialized facility for timing analysis of multicore real-time
systems.

VII. ON-GOING AND FUTURE WORK

A compiler is currently under development, which, based
on the inserted codes (currently Java and C) of DAG nodes
and a system configuration, will generate a parallel thread-
ing software ensuring the validated timing and performance
properties.

As future work, we are extending the tool to deal with
heterogeneous platforms, as well as multiple languages to pro-
gram the DAG tasks, and user-specified scheduling algorithms.
Such algorithms may be added in one of the following two

1Available on GitHub: https://github.com/mive93/DAG-
scheduling/blob/master/src/DAGTask/DAGTask.cpp

14

ways: (1) implementing the algorithm and integrating it with
the tool source code, (2) describing new algorithms using a
high-level language. We plan to open-source the tool, which
facilitates the former.

REFERENCES

[1] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[2] Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midon-
net, and Manar Qamhieh. Yartiss: A tool to visualize, test, compare and
evaluate real-time scheduling algorithms. PhD thesis, 2012.

[3] Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie
Déplanche. Simso: A simulation tool to evaluate real-time
multiprocessor scheduling algorithms. In International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), 2014.

[4] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram,
Jean-Marc Vincent, and Frédéric Wagner. Random graph generation for
scheduling simulations. In International ICST Conference on Simulation
Tools and Techniques (SIMUTools), 2010.

[5] Gaoyang Dai, Morteza Mohaqeqi, and Wang Yi. Timing-anomaly free
dynamic scheduling of periodic DAG tasks with non-preemptive nodes.
In RTCSA, pages 119–128, 2021.

[6] Eclipse. APP4MC. https://projects.eclipse.org/projects/automotive.
app4mc. Accessed: 2022-10-14.

[7] Eclipse. APP4MCsim. https://gitlab.eclipse.org/eclipse/app4mc/org.
eclipse.app4mc.tools.simulation. Accessed: 2022-10-14.

[8] Xu Jiang, Nan Guan, Haochun Liang, Yue Tang, Lei Qiao, and Wang
Yi. Virtually-federated scheduling of parallel real-time tasks. In RTSS,
pages 482–494, 2021.

[9] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world
automotive benchmarks for free. In Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[10] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and
Abusayeed Saifullah. Analysis of federated and global scheduling for
parallel real-time tasks. In ECRTS, pages 85–96, 2014.

[11] Shao-Yu Lien, Shin-Lin Shieh, Yenming Huang, Borching Su, Yung-
Lin Hsu, and Hung-Yu Wei. 5G new radio: Waveform, frame structure,
multiple access, and initial access. IEEE communications magazine,
55(6):64–71, 2017.

[12] Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. Response-
time analysis of limited-preemptive parallel DAG tasks under global
scheduling. In ECRTS, pages 21–1, 2019.

[13] Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit preemption
placement for real-time conditional code. In Euromicro Conference on
Real-Time Systems, pages 177–188, 2014.

[14] Benjamin Rouxel and Isabelle Puaut. STR2RTS: Refactored streamIT
benchmarks into statically analyzable parallel benchmarks for WCET
estimation & real-time scheduling. In International Workshop on Worst-
Case Execution Time Analysis (WCET), 2017.

[15] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang
Lu, and Christopher D Gill. Parallel real-time scheduling of DAGs.
IEEE Trans. Parallel Distrib. Syst., 25(12):3242–3252, 2014.

[16] Micaela Verucchi and Marko Bertogna. A comprehensive analysis of
dag tasks: solutions for modern real-time embedded systems. 2020.

15

Know your Enemy: Benchmarking and
Experimenting with Insight as a Goal

Mattia Nicolella∗, Denis Hoornaert†, Shahin Roozkhosh∗, Andrea Bastoni†, and Renato Mancuso∗
∗Boston University, †Technische Universität München

∗{mnico, shahin, rmancuso}@bu.edu, †{denis.hoornaert, andrea.bastoni}@tum.de

Abstract—Available benchmark suites are used to provide real-
istic workloads and to understand their run-time characteristics.
However, they do not necessarily target the same platforms
and often offer a diverse set of metrics, leading to the lack
of a knowledge base that could be used for both systems and
theoretical research. RT-Bench, a new benchmark framework
environment, tries to address these issues by providing a uniform
interface and metrics while maintaining portability. This demo
illustrates how to leverage this framework and its recently-
added features to improve the understanding of the benchmarks’
interaction with its system.

Index Terms—Benchmark, Profiling, Classification

I. INTRODUCTION

Benchmarking plays an indispensable role in the real-
time community to evaluate, consolidate, and validate novel
research. Using benchmarks to evaluate the performance of
production systems is also of great value as simulators only
partially depict real platforms’ behavior. Benchmarking is thus
beneficial for many aspects of the real-time research commu-
nity: from system research to theoretical system modeling.

For system research, understanding the run-time behavior
of realistic benchmarks is crucial to assess performance gains
and showcase novel system designs. In such cases, local
knowledge such as the maximal memory activity during the
application run-time is valuable. On the other hand, theoret-
ical research can benefit from using workload characteristics
obtained empirically to test scheduling and regulation mech-
anisms against realistic loads. Informed improvements in the
quality of regulation mechanisms require access to a coherent
database of measurements providing a global knowledge via
the aggregation of several performance metrics.

Despite its importance, to date, no existing reference knowl-
edge base provides such local and global knowledge. Un-
fortunately, this leaves the community to rely on personal
knowledge or experience. The problem is (at least partially)
imputable to the high fragmentation of benchmark suites.
In fact, the most commonly used benchmark suites in the
community differ in several aspects, including (1) system
compatibility, (2) requirements, (3) measured metrics, and (4)
reporting formats.

To address these issues, we have created a new benchmark
framework called RT-Bench1 that was initially presented in [1]
and that we are continuously improving and expanding. As
part of the continued effort in the project, we hereby present

1https://gitlab.com/rt-bench/rt-bench

the first milestone towards creating and establishing a public
knowledge base of benchmark performance and profile char-
acteristics. In the context of this demo, we will illustrate how
the expanding knowledge base can be exploited to gain wider
and deeper understanding of the interaction between realistic
benchmarks and underlying hardware. To this end, we will
demonstrate how to use RT-Bench, and showcase its recently-
added features2 to profile, extract, and report benchmarks’
characteristics. Specifically, in our demo, we will:

• Present the latest advancements in the capabilities of RT-
Bench originally presented in [1] that now includes 67
benchmarks.

• Illustrate how to interpret the profiles of complex
benchmarks using key performance metrics. As an ex-
ample, the profile of a benchmark issued from the
image-filters3 suite is provided.

• Provide a first comprehensive overview and classification
of benchmarks issued from several suites.

II. FOCUS OF THE DEMO

This section presents and discusses the results of two classes
of experiments to gain global and local knowledge about the
benchmarks at hand. These experiments showcase the capa-
bilities of RT-Bench to collect and export measurement data.
In Section II-A, the local knowledge experiment leverages
the capability of RT-Bench to simultaneously monitor several
performance counters during the execution of a benchmark. On
the other hand, the “global knowledge” experiments presented
in Section II-B showcase the ability to directly contrast and
classify benchmarks issued from different suites.

While RT-Bench is also compatible with x86_64 Intel
CPUs, our evaluation is based on ARM embedded platforms.
In particular, we use a Raspberry Pi 3B+ to carry out the
experiments. The system features (1) a four-CPUs (Cortex-
A53) cluster operating at 1.5GHz4, (2) per-core 32KB+32KB
instruction and data caches, and (3) a 1MB shared last-level
cache (LLC). We use a Linux kernel version 5.15.61, and RT-
Bench applications have been compiled with GCC 10.2.1. The
RT-bench benchmarks we used include the adapted version
of the image-filters suite, the San-Diego Vision Bench-
mark Suite [2] (SD-VBS), and the TACLeBench suite [3].

2Comprehensive documentation on RT-Bench features can be found in the
documentation: https://rt-bench.gitlab.io/rt-bench/

3https://gitlab.com/rt-bench/image-filters
4The frequency scaling governor is explicitly set to performance.

16

Fig. 1. Profiling of the canny image filter (see image-filters bench-
mark suite) via performances counters.

A. Local Knowledge - Profiling

For this experiment, we selected the canny benchmark
from the image-filters suite to illustrate the profiling
and analysis capabilities provided by RT-bench. In fact, due to
its six-pass filtering, the benchmark implementing the Canny
algorithm [4] is an ideal candidate. The benchmark is run using
the vga input size (i.e., 640×480 pixels) on a single core, and
all the supported performance counters have been monitored.
Fig. 1 displays the normalized cumulative activity for each
performance counter.

Fig. 1 clearly illustrates the fluctuations in resource demand
taking place during a benchmark’s execution. While the evolu-
tion of the instructions retired and the L1-D cache references
remain stable throughout, the trend of other performance
counters increases at various rates, hinting at the existence of
several execution phases with distinct characteristics. In this
case, such profiling is particularly interesting for budget-based
memory regulation mechanisms.

B. Global Knowledge - Benchmark Clustering

Using the aggregated performance counter activity and the
timing measurements, it is possible to extract, compare, and
classify benchmarks that belong to the various suites. Thanks
to the wide choice of metrics reported, many classification
criteria are available. Our demo will cover a handful of
them. One such classification is reported in Fig. 2. Here, we
showcase the relative positioning of the supported benchmarks
w.r.t. their Instruction per Clock-cycles (IPC) and their Last-
level Cache Refills per Clock-cycles (LLC-RPC). The figure is
a visual representation of how CPU-bound vs. memory-bound
the considered applications are.

Three observations can be made from Fig. 2. Firstly, only
four benchmarks (all from SD-VBS) stand out w.r.t. how fre-
quently they cause LLC refills. Secondly, all other benchmarks
create less frequent LLC refills and are grouped together in
a large cluster where only very few display an IPC higher
than 1. Finally, most benchmarks lay in a dense low-IPC and
low-refill frequency cluster. This cluster is mainly composed

Fig. 2. Clustering of benchmarks and their suite based on instruction per
clock (IPC) and last-level cache refills per clock (LLC-RPC).

of TACleBench and image-filters benchmarks. The presence
of the former can be explained by the small input data size
used, whereas the latter can be explained by its reliance on
costly floating point operations.

III. CONCLUSION

In this article, we demonstrate how the recent advancements
in RT-bench help get further insights into benchmarks.

The authors of this article and members of the RT-Bench
project are committed to maintaining and expanding the tools,
the supported benchmarks, and the measurement database.
Future extensions include the analysis of Artificial Neural
Networks models powered by widely used libraries (e.g.,
Tensorflow) and the capacity to define task sets to release
simultaneously.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant number CCF-2008799. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the
views of the NSF. Andrea Bastoni and Denis Hoornaert were
supported by the Chair for Cyber-Physical Systems in Produc-
tion Engineering at TUM and the Alexander von Humboldt
Foundation. In addition, Andrea Bastoni has been supported
by EIT Urban Mobility, an initiative of the European Institute
of Innovation and Technology (EIT), a body of the European
Union.

REFERENCES

[1] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Man-
cuso, “Rt-bench: An extensible benchmark framework for the analysis
and management of real-time applications,” in Proceedings of the 30th
International Conference on Real-Time Networks and Systems, 2022.

[2] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. B. Taylor, “Sd-vbs: The san diego vision benchmark suite,” in
2009 IEEE International Symposium on Workload Characterization.

17

[3] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in WCET 2016, M. Schoeberl, Ed., vol. 55. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, pp.
2:1–2:10.

[4] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, 1986.

18

Hardware Data Re-organization Engine for
Real-Time Systems

Shahin Roozkhosh∗, Denis Hoornaert†, Renato Mancuso∗ and, Manos Athanassoulis∗
∗Boston University †Technische Universität München

∗{shahin, rmancuso, mathan}@bu.edu, †denis.hoornaert@tum.de

Abstract—Access patterns and cache utilization play a key role
in the analyzability of data-intensive applications. In this demo,
we re-examine our previous research on software-hardware co-
design to push data transformation closer to memory from a
real-time perspective. Deployed in modern CPU+FPGA systems,
our design enables efficient and cache-friendly access to large
data by only moving relevant bytes from the target memory. This
(1) compresses the cache footprint and (2) reorganizes complex
memory access patterns into sequential and predictable patterns.

Index Terms—Memory Semantic, Data re-organization

I. INTRODUCTION

One of the key bottlenecks in modern computing is moving
data through the memory hierarchy to processing elements.
The corresponding predictability issues are particularly prob-
lematic in real-time systems, especially when large-footprint
applications exhibiting complex memory access patterns are
considered. Multi-level caches have been introduced to hide
the latency of memory fetches. They are effective in opti-
mizing performance when data accesses are characterized by
spatial and temporal locality.

Unfortunately, achieving spatiotemporal locality in large-
footprint applications is challenging. Motivated by this, our
recently published work [1] investigates the role of hardware-
aided on-the-fly data reshaping for a specific class of large-
footprint applications, i.e., database systems.

Relational databases typically store in-memory relations (ta-
bles) employing a row-oriented layout—offering good locality
for transactional processing—or a column-oriented layout,
with good locality for analytical processing. New applica-
tions, however, blend analytical and transactional processing.
Therefore, no single optimal layout exists. At the same time,
switching between them introduces costly bookkeeping and
data duplication overheads [2].

The same challenge also appears in real-time workloads
such as image processing and neural-network-based applica-
tions, where accessing tensor data often results in complex
strides that break locality. Moreover, the mismatch between
the size of cache lines and data items (e.g., integers, double)
results in unwanted data being transferred from main memory.
As the size of the accessed data grows, moving data through
the memory hierarchy becomes a fundamental bottleneck.
The higher the pressure exerted on the bottleneck, the more
unpredictability worsens.

While the main focus of our previous work is to optimize
the average-case performance of relational databases, our

Fig. 1: On-the-fly data transformation enhancing data locality.

intuition suggests that on-the-fly data reorganization can also
bring significant benefits in terms of predictability for two
main reasons: (1) reduced inter-process cache line eviction—
thanks to cache footprint compression and (2) conversion of
complex access patterns into sequential accesses—from the
cache and prefetcher perspective. Overall, enforcing access
patterns with high locality is increasingly more challenging
in data-intensive applications in both real-time and relational
systems. In all these applications, the processing is performed
by streaming over a set of data items that are (1) orders of
magnitude larger than the typical size of CPU caches; (2) often
sparsely stored in memory; and (3) accessed with hard-to-
predict, input-dependent patterns that are not optimized for
the linear organization of data in DRAM. In addition, often,
the computation performed on each data item is minimal.
Thus, hiding the cost of data movement via deep pipelines
and instruction-level reordering becomes ineffective.

In our demo, we will review the implications of on-the-fly
data reorganization in CPU+FPGA systems. Next, we will pro-
vide a walk-through of our Relational Memory Engine (RME),
capabilities, and deployment procedure on a real hardware
platform. Finally, we will showcase the live acquisition of
measurements that highlight the benefits of data reorganization
from the standpoint of performance predictability.

II. DATA RE-ORGANIZATION ENGINE

The RME is a hardware module located between the last-
level cache (LLC) and memory. Cache refills on a (config-
urable set of) variables go through the FPGA where RME
resides to capture CPU-memory accesses on-the-fly. Upon the
first capture, it initiates a set of transfers from main memory
to carve out only the desired bytes and into an internal buffer
where data locality is maximized (Figure 1). Once ready, a
cache line of packed useful data is available to the CPU as if
it existed in the main memory.

19

1 2 3 4 5 6 7 8 9 10
of Projected Columns

1
2
3
4
5
6
7
8
9

10

of
 S

el
ec

tio
n

Co
lu

m
ns

0.49 0.57 0.68 1.32 1.49 1.62 1.79 1.94 2.08 2.23
0.53 0.65 1.23 1.39 1.56 1.73 1.91 2.05 2.21 2.18
0.61 0.73 1.32 1.47 1.65 1.84 2.02 2.16 2.15 2.12
1.26 1.31 1.4 1.53 1.74 1.93 2.1 2.08 2.09 2.06
1.3 1.38 1.47 1.61 1.82 2.01 2.03 2.04 2.02 1.98
1.35 1.44 1.55 1.71 1.89 1.92 1.94 1.93 1.89 1.87
1.39 1.51 1.64 1.79 1.82 1.84 1.81 1.78 1.76 1.74
1.44 1.57 1.71 1.74 1.76 1.72 1.69 1.68 1.66 1.65
1.49 1.62 1.66 1.71 1.68 1.66 1.64 1.62 1.61 1.59
1.54 1.57 1.59 1.63 1.64 1.63 1.62 1.61 1.6 1.58

0.5

1.0

1.5

2.0

(a) Speedup - RME vs Columnar

1 2 3 4 5 6 7 8 9 10
of Projected Columns

1
2
3
4
5
6
7
8
9

10

of

 S
el

ec
tio

n
Co

lu
m

ns

1.49 1.48 1.47 1.47 1.45 1.45 1.44 1.43 1.43 1.41
1.48 1.46 1.46 1.44 1.44 1.43 1.42 1.41 1.4 1.41
1.46 1.45 1.44 1.42 1.42 1.41 1.4 1.38 1.4 1.42
1.45 1.43 1.42 1.41 1.39 1.38 1.37 1.38 1.39 1.4
1.4 1.38 1.37 1.37 1.35 1.35 1.36 1.37 1.38 1.39
1.38 1.37 1.36 1.34 1.34 1.34 1.35 1.36 1.36 1.38
1.35 1.34 1.34 1.32 1.33 1.33 1.34 1.35 1.37 1.37
1.33 1.32 1.31 1.32 1.32 1.33 1.34 1.34 1.35 1.36
1.3 1.29 1.3 1.31 1.32 1.32 1.32 1.33 1.33 1.35
1.28 1.29 1.29 1.3 1.31 1.31 1.32 1.32 1.34 1.34

1.30

1.35

1.40

1.45

(b) Speedup - RME vs Row

Fig. 2: Heat map of the RME speed-up against columnar 2a
and row 2b store for varying projected and selected columns.

We implemented and deployed RME on commercially avail-
able Systems-on-Chips (SoCs) integrating an on-chip FPGA
and a traditional multi-core processor (e.g., Intel HARPv2,
Xilinx UltraScale+). By employing commercially available
CPU+FPGA SoCs, we create an immediately-usable complete
prototype capable of running realistic applications. Our design
is based on the Programmable Logic In the Middle (PLIM) [3]
approach and can be employed to achieve greater control over
memory traffic by instantiating custom logic as an intermedi-
ary between processors and main memory.

III. DATA-RESHAPE FOR REAL-TIMES SYSTEMS

RME creates a re-organized alias of the target memory
based on a software-provided configuration. RME achieves the
timeliness requirements of real-time systems by accessing only
the desired subset of data items in main memory on behalf of
the processing units before sending fully compressed cache
lines to the LLC. This mechanism effectively filters out all
undesired elements that would otherwise pollute the cache,
enabling high data locality in upstream caching layers.

Motivated by real-time applicability, first, we experimen-
tally demonstrate that RME offers efficient native accesses
to any matrix column or column group, outperforming direct
row-wise and direct columnar accesses. To perform a fair
comparison, we implement RME, the row-store (ROW), and
the column-store (COL) approach in the same memory. The
default size of each row is 64 bytes, and the column width
is 4 bytes. Each experiment was repeated 30 times, and we
reported averages and standard deviations. We run two sets of
experiments for RME: hot (when the targeted data is ready in
the internal) and cold (otherwise).

We design a synthetic benchmark (Listing 1) to test the
behavior of our engine under representative memory access
patterns. Consider the following operation: Given a matrix M,
it reads over the columns subset based on a different selection
predicate. Here, COLp1

, ..., COLpi
are projection columns

and COLs1 , ..., COLsj are selection columns.

Listing 1: Synthetic Matrix Operation
READ COLp1 , ..., COLpi

FROM M WHERE COLs1 , ..., COLsj
> k ;

A. Latency Showcase
Figures 2a and 2b show the speedup of RME compared

to the in-memory row-store and column-store. In the x- and

16 32 64 128 256
Row width in Bytes

0

25

50

75

Ex
ec

ut
io

n
tim

e
(

s)

ROW COL RME cold RME Hot

Fig. 3: RME enables deterministic accesses latency.

y-axis we vary the number of projection (i) and selection
(j) columns. Figure 2a shows that when the number of
involved columns is small (≤ 4), column-store dominates
over RME (colored red). However, as the number of columns
increases due to the tuple materialization cost, the diminished
prefetching columnar access performance falls behind. In fact,
RME can be up to 2.23× faster than columnar access (bottom
rightmost cell). Figure 2b further highlights that RME always
outperforms in-memory row access by being 1.3−1.5× faster.

B. Predictability Showcase

We continue our experimentation with the benchmark above
where i = 1, j = 1, COLi ̸= COLj , focusing on the
comparison between RME, direct row-wise (ROW), and direct
columnar access (COL). We access 4 byte-wide columns while
varying the row size. Figure 3 shows the absolute latency.

We note from this figure that even without having the
projected column in the Reshape Buffer in FPGA (RME cold),
RME has faster execution than both ROW and COL in all
experiments. The reason is that (1) RME better exploits the
internal memory bandwidth to fetch only the desired data
items at bus-width granularity, and (2) the CPU caches are
not polluted with unwanted fields.

RME’s latency remains virtually the same as it accesses
only the relevant data. However, answering the query via direct
access of the row-oriented data leads to poor cache utilization
as larger rows lead to higher cache pollution. Conversely, RME
exhibits stable and predictable performance regardless of the
row size. Thus, RME allows predicting and exploiting data
reuse across processing phases.

C. Real-Time Evaluation

RME outperforms the row-store layout because, by defini-
tion, it accesses fewer data. On the other hand, queries that
access fewer columns can be more efficiently evaluated from
a columnar layout. However, when the number of projected
columns is high enough (more than four in our setup), RME
outperforms the columnar layout. Further, the RME imple-
mentation used in this setup runs at only 1/3 of the maximum
FPGA frequency. Operating at a higher frequency may reduce
memory access time and increase the benefits of RME.

IV. CONCLUSION

We depart from the traditional view of memory as a flat
array of bytes. We reshape the data via near-memory compu-
tation before moving it to the CPU, resulting in improvement
of both performance and determinism of memory accesses.

2
20

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant number CCF-2008799. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the NSF. Denis Hoornaert was supported by the Chair for
Cyber-Physical Systems in Production Engineering at TUM
and the Alexander von Humboldt Foundation.

REFERENCES

[1] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational memory:
Native in-memory accesses on rows and columns,” in Proceedings
26th International Conference on Extending Database Technology,
EDBT 2023, Ioannina, Greece, March 28-31, 2023. [Online]. Available:
https://doi.org/10.48786/edbt.2023.06

[2] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki,
“The Case For Heterogeneous HTAP,” in Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), 2017. [Online].
Available: http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf

[3] S. Roozkhosh and R. Mancuso, “The potential of programmable logic in
the middle: cache bleaching,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2020.

3
21

https://doi.org/10.48786/edbt.2023.06
http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf

Demonstrating R-TOD: Real-Time Object Detector
with Minimized End-to-End Delay

Seungha Kim1, Ho Kang1, Sol Ahn1, Kyungtae Kang2, Nikil Dutt3, and Jong-Chan Kim1,4

1Graduate School of Automotive Engineering, Kookmin University, Korea
2Department of Computer Science and Engineering, Hanyang University, Korea

3Department of Computer Science, University of California, Irvine, USA
4Department of Automobile and IT Convergence, Kookmin University, Korea

{0206dbsh, rkdghrk12, nur636}@kookmin.ac.kr, ktkang@hanyang.ac.kr, dutt@uci.edu, jongchank@kookmin.ac.kr

Abstract—The end-to-end delay of object detection systems
should be thoroughly analyzed and minimized. In this regard,
our previous work [1] presented a real-time object detector
with minimized delays (a.k.a. R-TOD). This work, in turn,
demonstrates R-TOD by comparing its delays with our baseline
object detector (i.e., renowned Darknet YOLO). For that, we use
two identical computing platforms with cameras and monitors
so that the audience can see the different delays between the
physical appearance of objects and their detection on monitors.

I. INTRODUCTION TO R-TOD

R-TOD is a real-time object detector presented in our previ-
ous work [1], which aims at minimizing the end-to-end delay
from the physical appearance of an object to its detection.
The work was motivated by observing significant time lags
of many state-of-the-art object detectors, for example, the
Darknet YOLO object detectors [2], [3], despite their decent
frame rates.

To solve this peculiar timing issue, we thoroughly analyzed
the internal architecture of object detection systems, finding
three significant defects. Then an optimal architecture was
proposed, which shows 76% average and 67% 99th percentile
delay reductions for YOLOv3, without any loss in object
detection accuracy. R-TOD is currently implemented in Nvidia
integrated GPU (iGPU) platforms (e.g., Nvidia Jetson AGX
Xavier and Nvidia Jetson AGX Orin).

A. End-to-End Delay Analysis

We analyzed the internal architecture of the Darknet YOLO
object detector, where we found the following issues with
significant impacts on end-to-end delays:

• Queue delay. There is a queue between the camera
subsystem (i.e., producer) and the detector subsystem
(i.e., consumer), causing a significant queue delay due to
the faster consumer compared with the slower producer.

• Imbalanced pipeline stages. Three pipeline stages (i.e.,
fetch, inference, and display) comprising the detector
subsystem have different lengths, causing significant idle
times in the pipeline schedule.

• CPU-GPU memory contention. In iGPU systems, con-
currently running GPU kernels and CPU threads incurs
significant shared memory contention, causing signifi-
cantly increased execution times.

B. End-to-End Delay Optimization

Based on the analysis, we developed three optimization
techniques as follows:

• On-demand capture. By eliminating the queue between
the camera and detector subsystems, we can remove
the queue delay. Then images are captured on demand
by a blocking call. Thus, a new blocking delay factor
appears while waiting for the arrival of a captured image.
However, it is far smaller than the queue delay.

• Zero-slack pipeline. In usual embedded systems, the
inference stage has the dominant pipeline cycle length.
To eliminate the idle time between a fetch stage and its
inference stage in the next cycle caused by the imbal-
anced pipeline stages, we release the fetch stage such
that its completion time becomes close to the completion
of the inference stage in the same pipeline cycle.

• Contention-free pipeline. To alleviate the significant
memory bandwidth contention in our iGPU-based target
system, we modify the pipeline architecture such that
the inference stage no longer concurrently executes with
other CPU threads. As a result, this new architecture
significantly reduces the delay at the cost of a slightly
increased object detection cycle time.

II. DEMONSTRATION

For the demonstration, we will install two object detection
systems with cameras, computing platforms, and monitors.
The end-to-end delays can be tangibly recognized by seeing
when the physical movement in the real world is detected by
the object detector in the monitor. In such ways, the baseline
object detector and our R-TOD will be compared in real time
so the audience can actually see the difference.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MSIT) (2022R1A2C1013197). The corresponding author is
J.-C. Kim.

22

REFERENCES

[1] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-tod: Real-time
object detector with minimized end-to-end delay for autonomous driving,”
in 2020 IEEE Real-Time Systems Symposium (RTSS), Dec 2020, pp. 191–
204.

[2] J. Redmon, “Darknet: Open source neural networks in C,”
http://pjreddie.com/darknet/, 2013–2016.

[3] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

23

Demo Paper: Real-Time Monitoring of Heart Rate
Variability with PPG

Jingye Xu, Yuntong Zhang, Mimi Xie, Wei Wang and Dakai Zhu
The University of Texas at San Antonio

Abstract—Heart rate variability (HRV) is a critical vital sign
that can predict a number of different diseases such as heart
attack, arrhythmia, and stress. Traditionally, hospitals use elec-
trocardiogram (ECG) devices to record the heart’s bioelectrical
signals which are converted to HRV values. Despite the high
accuracy, this method is expensive and inconvenient. Recently,
using photoplethysmography (PPG) sensors that collect reflective
light signals has been adopted as a cost-effective alternative
for measuring heart health. However, due to the sensitivity
of PPG sensors, HRV estimation with PPG signals remains a
challenging problem. To this end, this paper demonstrates a
real-time monitoring system of HRV with PPG sensors. The
real-time HRV monitoring system, which benefits from machine
learning, is developed with a resource-limited ultra-low-power
microcontroller unit (MCU). In addition, it empowers the system
with adaptive reconfiguration capability at run-time to improve
energy efficiency and adapt to different demands. Moreover, the
demo shows the HR and HRV in a real-time manner with a
display.

I. INTRODUCTION

Heart rate variability (HRV) which measures the difference
in time between successive heart beats is widely considered as
one of the most important vital signs of body health [1]. HRV
analysis has become an increasingly important diagnostic tool
in cardiology as it shows relations to heart rate turbulence,
maximal oxygen uptake, inflammatory response, and exercise
capacity [2], [3]. As a result, HRV monitoring system is
indispensable for people who need real-time monitoring of
heart activities.

Traditionally, hospitals use electrocardiogram (ECG) de-
vices consisting of electrodes mounted on the human body
to record the heart’s electrical signals [4]. ECG devices can
provide accurate and real-time HRV monitoring, which is the
best choice for patients who need intensive care in hospitals.
However, those ECG devices are heavy and not portable as
they require cable connections. Recently, ECG technology has
been integrated into Apple Watch [5], [6] for everyday HRV
monitoring. Despite the capability of starting HRV monitoring
anytime and anywhere, it still has several limitations due to the
special operation features of ECG. To start HRV monitoring
with the ECG module, Apple Watch users are required to rest
their arms on a table or on their lap and keep their fingers
touching the Digital Crown (the button on Apple Watch),
which is inconvenient and impossible for continuous long-time
monitoring [7].

This project was funded (in-part) by The University of Texas at San
Antonio, Office of the Vice President for Research, Economic Development
& Knowledge Enterprise.

Alternatively, using photoplethysmography (PPG) sensors
that collect reflective light signals appears to be a promising
approach to measuring heart health as it is low-cost and more
convenient than ECG devices [8]. Although PPG sensors can
not provide the R-R interval values which are the essential
information for calculating HRV, they can extract the ”peak”-
”peak” interval values that can be interpreted as the cardiac
R-R interval [9]. The location of a peak represents the time
instant at which a heartbeat occurs. HRV computation requires
accurate identification of the location of peaks in the PPG
signal. However, due to the sensitivity of PPG sensors, HRV
computation with PPG signals remains a challenging problem.

To address the problem, we design a real-time monitoring
system of HRV with PPG sensors. This paper demonstrates
our prototype deployed on an ultra-low-power microcontroller
(MCU) and how it works by adaptively switching in different
modes for different demands.

II. FRAMEWORK FOR EFFICIENT PPG-BASED HRV
ESTIMATION

A. Real-time On-device HRV Monitoring

Since the PPG sensor needs to be integrated into a low-
power wearable device with limited computing resources (low
CPU frequency and small memory size), the implementation
of real-time HRV monitoring needs to take the specifications
of the ultra-low-power MCU into account. To fulfill the
requirements of real-time, we propose the data pipeline as
shown in Fig. 1.

Initially, the light signals of the PPG sensor will be stored
in a buffer on MCU as the signals data array will be used to
estimate peaks by a signal processing function. The size of the
buffer is determined by the sampling rate times four seconds.
For example, when the sampling rate of the sensor is set to
25Hz, the buffer size is 100 (25 × 4) with each value being
a four-byte floating number. The reason we choose floating
numbers to store the raw is that the raw data usually has a
value up to 14,000 and the peak estimation algorithm requires
floating number operations. Once we get the estimated peaks
from signal processing, we get an approximately calculated
HR. Then the calculated HR will be sent to the HR model
as the input to predict HR. In our experiment, there is one
HR being predicted and stored in the non-volatile memory
every second. The predicted HR will be sent to a UART
client to provide real-time monitoring. After every specific
time interval (like the 30s, 60s, etc.), we will retrieve all
historical HR to estimate an HRV during this period. The HR

24

Predicted
HR

Buffer ...

Non-volatile
storage

Signal
Processing

(estimate peaks)

Four seconds
data array

Calculated
HR

HR Model

Preprocessing
(calculate

RMSSDHR)

HRV Model

HR array,
RMSSDHR

Predicted
HRV

UART client

Light signals

N seconds
HR array

PPG Sensor

...

Fig. 1. Data pipeline of real-time on-device HRV monitoring system.

array will be sent to a preprocessing function to calculate one
feature named RMSSDHR. The calculation for RMSSDHR
is shown in Equation (1), where HRi denotes the ith HR,
and N denotes the total number of HR in a given period (the
period can be 30-300 seconds in our experiment). After that,
we use the calculated RMSSDHR and the HR array as the
input features to predict the HRV. The predicted HRV will be
stored in the non-volatile memory and sent to the UART client
for monitoring as well.

RMSSDHR =

√∑N−1
i=1 (60, 000/HRi+1 − 60, 000/HRi)2

N − 1
(1)

The data pipeline proposed above fully considers the mem-
ory and computing limitations of an ultra-low-power MCU.
Non-volatile storage is used to avoid data loss when power is
off. We only store light signals in the RAM to ensure enough
memory space for HR signal processing, model inference, and
HRV preprocessing.

B. Adaptive Run-time Reconfiguration

To implement run-time reconfiguration, we deploy three
system configuration modes, which are designed for various
demands, on the board as shown in Table I. In these three
modes, the framework will work under different deep learning
models, sampling rate (SR), and MCU Digitally Controlled
Oscillator (DCO) frequency. Thus as a result, with the pre-
configurations, we can easily switch between different modes
to meet different needs.

TABLE I
VARIOUS SYSTEM MODES.

Mode Model DCO/MHz SR/Hz
Fast mode 121-10-10-1 8 25

Energy saving mode 121-10-10-1 1 12.5
High accurate mode 301-12-12-1 8 100

III. DEMONSTRATION SETUP

A. Hardware Setup

Fig. 2 depicts the setup of the demonstration. The PPG
sensor is MAXREFDES117 that provides reliable light signals
and has noise filter units. The MSP430FR5994 development
kit is one of the MSP430 families produced by Texas In-
struments. The development kit contains everything needed
to start developing on the ultra-low-power microcontroller
platform, including on-device debug probe for programming,
debugging, and energy measurements. The PPG sensor com-
municates with the MSP430FR5994 through the I2C bus. The
MSP430FR5994 board connects to a Raspberry Pi through a
micro-USB to get power and to a convenient UART commu-
nication. The Pi will decode the UART messages and display
the monitoring results on a TFT LCD display with a resolution
of 320× 240.

HR00/00/0000 00:00:00
Mode: Fast mode
HR: 000.000

time for HR: 000.000
time for HRV: 000.000

HRV: 000.000

HR
histories

HRV
histories

I2C
Power
UART SPI

PowerPower

PPG Sensor

MSP430FR5994

TFT Display

Raspberry Pi 4B

Fig. 2. Setup.

REFERENCES

[1] J Camm. Task force of the european society of cardiology and the north
american society of pacing and electrophysiology. heart rate variability:
Standarts of measurement, physiological interpretation and clinical use.
Circulation, 93:1043–1065, 1996.

[2] George E Billman, Heikki V Huikuri, Jerzy Sacha, and Karin Trimmel.
An introduction to heart rate variability: methodological considerations
and clinical applications. Frontiers in physiology, 6:55, 2015.

[3] Juul Achten and Asker E Jeukendrup. Heart rate monitoring. Sports
medicine, 33(7):517–538, 2003.

[4] David B Geselowitz. On the theory of the electrocardiogram. Proceedings
of the IEEE, 77(6):857–876, 1989.

[5] Anand N Ganesan, Derek P Chew, Trent Hartshorne, Joseph B Sel-
vanayagam, Philip E Aylward, Prashanthan Sanders, and Andrew D
McGavigan. The impact of atrial fibrillation type on the risk of
thromboembolism, mortality, and bleeding: a systematic review and meta-
analysis. European heart journal, 37(20):1591–1602, 2016.

[6] Nino Isakadze and Seth S Martin. How useful is the smartwatch ecg?
Trends in cardiovascular medicine, 30(7):442–448, 2020.

[7] Apple Inc. Take an ecg with the ecg app on apple watch, May 2022.
[8] John Allen. Photoplethysmography and its application in clinical physi-

ological measurement. Physiological measurement, 28(3):R1, 2007.
[9] Christopher G Scully, Jinseok Lee, Joseph Meyer, Alexander M Gorbach,

Domhnull Granquist-Fraser, Yitzhak Mendelson, and Ki H Chon. Phys-
iological parameter monitoring from optical recordings with a mobile
phone. IEEE Transactions on Biomedical Engineering, 59(2):303–306,
2011.

25

Demo Abstract: Real-Time Out-of-Distribution
Detection on a Mobile Robot

Michael Yuhas1,2, Arvind Easwaran1

1School of Computer Science and Engineering
2Energy Research Institute @ NTU, Interdisciplinary Graduate Program

Nanyang Technological University, Singapore
michaelj004@e.ntu.edu.sg, arvinde@ntu.edu.sg

Abstract—In a cyber-physical system such as an autonomous
vehicle (AV), machine learning (ML) models can be used to
navigate and identify objects that may interfere with the vehicle’s
operation. However, ML models are unlikely to make accurate
decisions when presented with data outside their training distri-
bution. Out-of-distribution (OOD) detection can act as a safety
monitor for ML models by identifying such samples at run time.
However, in safety critical systems like AVs, OOD detection
needs to satisfy real-time constraints in addition to functional
requirements. In this demonstration, we use a mobile robot as
a surrogate for an AV and use an OOD detector to identify
potentially hazardous samples. The robot navigates a miniature
town using image data and a YOLO object detection network.
We show that our OOD detector is capable of identifying OOD
images in real-time on an embedded platform concurrently
performing object detection and lane following. We also show
that it can be used to successfully stop the vehicle in the presence
of unknown, novel samples.

I. INTRODUCTION

Machine learning (ML) models are not likely to perform
well when they receive samples outside of their training data
distributions. This poses a major risk to safety critical cyber-
physical systems such as autonomous vehicles (AVs). Consider
an ML-based object detector deployed to an AV: during train-
ing, the object detector may be exposed to images with little or
no snow, and during operation, a heavy snowstorm could lead
to poor results. Fig. 1-a shows an in-distribution (ID) image for
such a system: the YOLOv7 model [1] successfully detects the
ducks closest to the vehicle when no snow is present. However,
when excessive snowfall occurs (simulated by falling confetti)
the scene becomes out-of-distribution (OOD) (Fig. 1-b), and
the model can no longer detect the ducks. It is imperative
that such OOD samples are identified to prevent the system
from taking dangerous control actions. An OOD detector can
be used as a run-time safety monitor to achieve this goal,
however, the detector must also meet hard real-time deadlines
to ensure that detection occurs with sufficient time to avoid a
collision [2]. Furthermore, OOD detection on image data relies
on deep neural networks, which must share computational
resources with other safety critical tasks.

This research was funded in part by MoE, Singapore, Tier-2 grant number
MOE2019-T2-2-040. This research is part of the programme DesCartes and
is supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its Campus for Research Excellence and Technological
Enterprise (CREATE) programme.

Fig. 1. (a) The YOLO (you only look once) model detects the two nearest
ducks when an image is ID; (b) the YOLO model is unable to identify any
objects in the OOD image with simulated snowfall.

Prior works have deployed OOD detectors to mobile robots
and demonstrated their ability to meet deadlines and detect
harmful samples at run time. In [3], the reconstruction loss
of a variational autoencoder (VAE) was used to perform
OOD detection on image data in a simulated environment.
Both detection accuracy and execution time were considered,
however, the experiments were not performed on a physical
system. In [2], the latent space of a VAE was used for OOD
detection on a mobile robot to trigger an emergency stop
before a collision occurred. While this work was demonstrated
on a physical system, the OOD detector failed to meet real-
time constraints and was not always able to stop the robot
in time. In [4], a deep radial basis function (RBF) network
was trained to steer a mobile robot around a racetrack and
simultaneously perform OOD detection. This integrated OOD
detection and steering control network requires regression
tasks to be reformulated as classification tasks, which is
not always desirable. So far, no work has deployed a deep
ML model and an independent OOD detector to a CPS and
observed the effect on the response times of both tasks.

We will perform a live demonstration of the feasibility of
an OOD detector as a real-time safety monitor for a mobile
robot performing lane navigation and object detection tasks.

1) Our OOD detector meets real-time deadlines and does
not interfere with the lane follower’s operation.

2) Our OOD detector successfully triggers emergency brak-
ing in OOD conditions without excessive false-positives.

3) Our test bed allows us to easily create unique test
scenarios; while we consider the case of snowfall as
OOD, the audience can attempt to foil the OOD detector
with other conditions.

26

II. SYSTEM DESIGN

We use the Duckietown platform [5] to simulate an AV.
Duckietown consists of small, holonomic robots (Duckiebots)
that navigate a miniature world (Duckietown) with lane mark-
ings that mimic actual roads. The inhabitant of Duckietown
(rubber ducks) serve as obstacles that the Duckiebot must
not hit. This platform allows us to deploy multiple ROS
(Robot Operating System) packages to a Duckiebot, each
running within its own Docker container. Fig. 2 shows the
high-level software block diagram of our system. A lane
follower based on traditional computer vision (CV) techniques
identifies road markings, calculates the desired pose of the
robot, and sends this information to a kinematics node that
calculates the wheel rotations required to achieve that pose. In
parallel, an object detection node identifies potential obstacles
and sends bounding box coordinates to a graphical display for
visualization. An OOD detector acts as a safety monitor for
the entire system and sends an emergency stop message if an
incoming image is OOD. The system has one sensor (camera
node) and two actuators (wheels driver node). The source code
for our software implementation is available on GitHub. 1

Fig. 2. Software system block diagram of our Duckiebot. Red indicates
a sensing node, blue corresponds to a signal processing node, and green
represents an output node.

A. Lane Following

Duckietown’s native lane following package is used to steer
the robot [5]. It uses traditional CV algorithms and consists
of the following steps: image equalization, road marking
detection, projection from image space to the world frame,
a Bayesian filter for lane localization, and finally the lane
controller which generates the wheel commands. In isolation
we measured an average-case execution time (ACET) of
40.1 ms and a worst-case execution time of 134.3 ms. By using
traditional CV line detection, we are able to show that the
OOD detector is also useful at protecting non-ML components
from anomalous images. For example, under conditions such
as heavy snow, lane markings may not be visible and the
lane follower will mistake spurious lines in the image as road
markings leading to inappropriate control actions.

B. Object Detection

To accomplish object detection, we trained a YOLOv7
tiny object detection network [1] on the Duckietown object
detection dataset that contains three classes: rubber ducks,
traffic cones, and Duckiebots. YOLOv7 tiny is a lightweight
variant of the YOLO family of object detection networks

1https://github.com/CPS-research-group/CPS-NTU-Public

that identifies bounding box coordinates and object class
information simultaneously [6]. Although not as accurate as
two-stage methods like Fast R-CNN, YOLO networks are
capable of faster inference times, which is desirable in our
application. YOLOv7 tiny can be trained for different input
image sizes and Fig. 3 shows the resulting trade-off between
ACET and the model’s ability to reliably identify objects.
All ACETs are measured with the model quantized to 8-bits
via dynamic quantization [7] and the QNNPACK backend for
inference on the AArch64 target platform [8]. The YOLOv7
tiny model trained on 64x64 images (Fig. 3-a) is unable to
make any correct detections, but has the fastest ACET. We
select the model trained on 160x160 images (Fig. 3-d) for use
in our demo: it is better at identifying the rubber ducks, but
has an ACET of 163.4 ms.

Fig. 3. Confusion matrices and corresponding ACETs for a YOLOv7 tiny
network trained on the Duckietown dataset with input sizes (a) 64x64,
(b) 96x96, (c) 128x128, and (d) 160x160.

C. Out-of-Distribution Detection

In order to construct an accurate, yet fast OOD detector,
we used the OOD design methodology proposed in [9]. This
methodology takes an existing OOD detector and searches pre-
processing parameter combinations and quantization schemes
to find several candidate solutions. We plan to focus on
OOD caused by falling snow (Fig. 1-b), so we started with
the optical flow OOD detector proposed in [10] that uses a
variational autoencoder to identify environmental motion not
present in the training set. Our ID dataset consisted of 2048
images gathered by the Duckiebot navigating an empty track
autonomously. We converted sequential images into optical
flow matrices using the Farnebäck optical flow algorithm and
ran a genetic algorithm (GA) to select the input image size,
input depth (sequential flows), and interpolation method that

27

maximize the F1 score of the OOD detector. To calculate
F1 score, we used a test set containing eight videos with
frames labeled ID or OOD based on the presence of simulated
snowfall. Table I shows the candidate solutions identified by
the GA and their respective functional and non-functional
performance. All the execution times (ETs) are calculated with
8-bit dynamic quantization [7] and tested with the QNNPACK
backend [8] on the target platform. We selected the best OOD
detector identified by the GA (60x80 input size, 10 flows,
bilinear interpolation) for our demo.

TABLE I
CANDIDATE SOLUTIONS FOR THE OOD DETECTOR WITH THEIR

FUNCTIONAL PERFORMANCE (F1 SCORE) AND ET MEAN AND VARIANCE.

Size Flows Interp. F1 Score ET (mean) ET (var.)
30x40 4 Bilinear 0.43 44.1 ms 1098 ms2

60x80 5 Bilinear 0.97 53.3 ms 1485 ms2

90x120 2 Bilinear 0.54 58.1 ms 900 ms2

120x160 12 Bilinear 0.90 70.0 ms 1096 ms2

III. DEMONSTRATION

All experiments were performed on a DB21M Duckiebot
equipped with a Jetson Nano 2GB running L4T 32.1 with the
PREEMPT RT kernel patch installed. Fig. 4 shows the main
components of our demonstration. A Duckiebot drives forward
along a road while the object detection network identifies
duckies in the environment. To simulate snowfall, confetti is
dumped in front of the robot. During the demonstration:

1) The OOD detector successfully triggers an emergency
stop when snowfall is present in the environment.

2) In the absence of OOD samples, the vehicle can reach
the end of the track without a false positive detection.

3) The OOD detector maintains a response time of less than
800 ms and the lane follower still meets its deadlines.

Fig. 5 shows the response times for the three tasks (OOD
detection, object detection, and lane following) when run
together on the Duckiebot. We observe that the OOD detector
always has a response less than 800 ms and is able to stop
the vehicle before a collision or leaving the road. Furthermore,
the OOD detector does not interfere with the lane follower’s
response time and the Duckiebot is still able to navigate.
However, the response time of the object detector increases
drastically in comparison to its ACET when it shares the CPU
with other tasks. We believe this is due to the system utilization
approaching 100 percent and that when all three tasks are run
simultaneously, all 2GB RAM have been utilized and memory
intensive tasks (like YOLO inference) must continually swap
pages in and out of memory as they are scheduled.

REFERENCES

[1] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
Jul. 2022, doi: 10.48550/ARXIV.2207.02696.

[2] M. Yuhas, Y. Feng, D. J. X. Ng, Z. Rahiminasab, and A. Easwaran,
“Embedded Out-of-Distribution Detection on an Autonomous Robot
Platform,” in Proceedings of the Workshop on Design Automation for
CPS and IoT, May 2021, pp. 13–18, doi: 10.1145/3445034.3460509.

Fig. 4. The main components of the experimental setup: the Duckiebot (red)
is a surrogate for an AV, the ducks (yellow) simulate pedestrians, and the
confetti (blue) simulates snowfall.

Fig. 5. Response time distributions when the OOD detection task (A), object
detection task (B), and lane following task (C) run simultaneously on the
Duckiebot. The response times of all three tasks increase in comparison to
their ETs, but object detection suffers the most degradation.

[3] F. Cai and X. Koutsoukos, “Real-time Out-of-distribution Detection in
Learning-Enabled Cyber-Physical Systems,” in 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS), Apr.
2020, pp. 174–183, doi: 10.1109/ICCPS48487.2020.00024

[4] M. Burruss, S. Ramakrishna and A. Dubey, “Deep-RBF Networks for
Anomaly Detection in Automotive Cyber-Physical Systems,” in 2021
IEEE International Conference on Smart Computing (SMARTCOMP),
Aug. 2021, pp. 55–60, doi: 10.1109/SMARTCOMP52413.2021.00028.

[5] L. Paull et al., “Duckietown: An open, inexpensive and flexible platform
for autonomy education and research,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 1497–
1504, doi: 10.1109/ICRA.2017.7989179.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp.
779–788, doi: 10.1109/CVPR.2016.91.

[7] R. Krishnamoorthi, J. Reed, M. Ni, C. Gottbrath, and
S. Weidman. “Introduction to Quantization on PyTorch.”
PyTorch.org. https://pytorch.org/blog/introduction-to-quantization-
on-pytorch/#dynamic-quantization (accessed Oct. 15, 2022).

[8] M. Dukhan, Y. Wu, H. Lu, and B. Maher. QNNPACK.
(2019). Accessed: Oct. 15, 2022 [Online]. Available:
https://github.com/pytorch/QNNPACK/README.md.

[9] M. Yuhas, D. J. X. Ng, and A. Easwaran, “Design Methodology for Deep
Out-of-Distribution Detectors in Real-Time Cyber-Physical Systems,” in
2022 IEEE 28th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), Aug. 2022, pp. 180–185,
doi: 10.1109/RTCSA55878.2022.00025.

[10] Y. Feng, D. J. X. Ng, and A. Easwaran, “Improving Variational
Autoencoder based Out-of-Distribution Detection for Embedded Real-
time Applications,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 20, no. 5s, pp. 1–26, Oct. 2021, doi: 10.1145/3477026.

28

	Introduction
	Demo Description
	Introduction
	Data Re-organization Engine
	Data-reshape for real-times systems
	Latency Showcase
	Predictability Showcase
	Real-Time Evaluation

	Conclusion
	References

